The podcast about Python and the people who make it great

Similar Podcasts

The Infinite Monkey Cage

The Infinite Monkey Cage
Brian Cox and Robin Ince host a witty, irreverent look at the world through scientists' eyes.

The Top Shelf

The Top Shelf
ThePrimeagen and teej_dv are on a quest to find the best possible technical speakers and ask the best possible questions we can find. You all know ThePrimeagen can't read, so this is a great format for him to really shine. Teej is here to make sure that Prime knows who the guest is and also to interrupt Prime wherever possible

24H24L

24H24L
Evento en línea, de 24 horas de duración que consiste en la emisión de 24 audios de diversas temáticas sobre GNU/Linux. Estos son los audios del evento en formato podcast.

Growing And Supporting The Data Science Community At Anaconda

August 19, 2021 00:55:48 48.04 MB Downloads: 0

Data scientists are tasked with answering challenging questions using data that is often messy and incomplete. Anaconda is on a mission to make the lives of data professionals more manageable through creation and maintenance of high quality libraries and frameworks, the distribution of an easy to use Python distribution and package ecosystem, and high quality training material. In this episode Kevin Goldsmith, CTO of Anaconda, discusses the technical and social challenges faced by data scientists, the ways that the Python ecosystem has evolved to help address those difficulties, and how Anaconda is engaging with the community to provide high quality tools and education for this constantly changing practice.

Network Analysis At The Speed Of C With The Power Of Python Using NetworKit

August 14, 2021 00:37:07 28.11 MB Downloads: 0

Analysing networks is a growing area of research in academia and industry. In order to be able to answer questions about large or complex relationships it is necessary to have fast and efficient algorithms that can process the data quickly. In this episode Eugenio Angriman discusses his contributions to the NetworKit library to provide an accessible interface for these algorithms. He shares how he is using NetworKit for his own research, the challenges of working with large and complex networks, and the kinds of questions that can be answered with data that fits on your laptop.

Delivering Deep Learning Powered Speech Recognition As A Service For Developers At AssemblyAI

August 03, 2021 00:52:20 40.7 MB Downloads: 0

Building a software-as-a-service (SaaS) business is a fairly well understood pattern at this point. When the core of the service is a set of machine learning products it introduces a whole new set of challenges. In this episode Dylan Fox shares his experience building Assembly AI as a reliable and affordable option for automatic speech recognition that caters to a developer audience. He discusses the machine learning development and deployment processes that his team relies on, the scalability and performance considerations that deep learning models introduce, and the user experience design that goes into building for a developer audience. This is a fascinating conversation about a unique cross-section of considerations and how Dylan and his team are building an impressive and useful service.

Taking Aim At The Legacy Of SQL With The Preql Relational Language

July 27, 2021 00:36:38 30.43 MB Downloads: 0

SQL has gone through many cycles of popularity and disfavor. Despite its longevity it is objectively challenging to work with in a collaborative and composable manner. In order to address these shortcomings and build a new interface for your database oriented workloads Erez Shinan created Preql. It is based on the same relational algebra that inspired SQL, but brings in more robust computer science principles to make it more manageable as you scale in complexity. In this episode he shares his motivation for creating the Preql project, how he has used Python to develop a new language for interacting with database engines, and the challenges of taking on the legacy of SQL as an individual.

Unleash The Power Of Dataframes At Any Scale With Modin

July 21, 2021 00:38:53 31.9 MB Downloads: 0

When you start working on a data project there are always a variety of unknown factors that you have to explore. One of those is the volume of total data that you will eventually need to handle, and the speed and scale at which it will need to be processed. If you optimize for scale too early then it adds a high barrier to entry due to the complexities of distributed systems, but if you invest in a lot of engineering up front then it can be challenging to refactor for scale. Modin is a project that aims to remove that decision by letting you seamlessly replace your existing Pandas code and scale across CPU cores or across a cluster of machines. In this episode Devin Petersohn explains why he started working on solving this problem, how Modin is architected to allow for a smooth escalation from small to large volumes of data and compute, and how you can start using it today to accelerate your Pandas workflows.

Exploring The SpeechBrain Toolkit For Speech Processing

July 13, 2021 00:37:26 30.69 MB Downloads: 0

With the rising availability of computation in everyday devices, there has been a corresponding increase in the appetite for voice as the primary interface. To accomodate this desire it is necessary for us to have high quality libraries for being able to process and generate audio data that can make sense of human speech. To facilitate research and industry applications for speech data Mirco Ravanelli and Peter Plantinga are building SpeechBrain. In this episode they explain how it works under the hood, the projects that they are using it for, and how you can get started with it today.

Fast And Educational Exploration And Analysis Of Graph Data Structures With graph-tool

July 06, 2021 00:41:59 33.37 MB Downloads: 0

If you are interested in a library for working with graph structures that will also help you learn more about the research and theory behind the algorithms then look no further than graph-tool. In this episode Tiago Peixoto shares his work on graph algorithms and networked data and how he has built graph-tool to help in that research. He explains how it is implemented, how it evolved from a simple command line tool to a full-fledged library, and the benefits that he has found from building a personal project in the open.

Lightening The Load For Deep Learning With Sparse Networks Using Neural Magic

June 29, 2021 00:48:32 36.93 MB Downloads: 0

Deep learning has largely taken over the research and applications of artificial intelligence, with some truly impressive results. The challenge that it presents is that for reasonable speed and performance it requires specialized hardware, generally in the form of a dedicated GPU (Graphics Processing Unit). This raises the cost of the infrastructure, adds deployment complexity, and drastically increases the energy requirements for training and serving of models. To address these challenges Nir Shavit combined his experiences in multi-core computing and brain science to co-found Neural Magic where he is leading the efforts to build a set of tools that prune dense neural networks to allow them to execute on commodity CPU hardware. In this episode he explains how sparsification of deep learning models works, the potential that it unlocks for making machine learning and specialized AI more accessible, and how you can start using it today.

Finding The Core Of Python For A Bright Future With Brett Cannon

June 22, 2021 01:03:18 53.07 MB Downloads: 0

Brett Cannon has been a long-time contributor to the Python language and community in many ways. In this episode he shares some of his work and thoughts on modernizing the ecosystem around the language. This includes standards for packaging, discovering the true core of the language, and how to make it possible to target mobile and web platforms.

Traversing The Challenges And Promise Of Graph Machine Learning

June 15, 2021 00:47:47 36.08 MB Downloads: 0

The foundation of every ML model is the data that it is trained on. In many cases you will be working with tabular or unstructured information, but there is a growing trend toward networked, or graph data sets. Benedek Rozemberczki has focused his research and career around graph machine learning applications. In this episode he discusses the common sources of networked data, the challenges of working with graph data in machine learning projects, and describes the libraries that he has created to help him in his work. If you are dealing with connected data then this interview will provide a wealth of context and resources to improve your projects.

Keep Your Analytics Lint Free With SQLFluff

June 08, 2021 01:13:13 50.75 MB Downloads: 0

The growth of analytics has accelerated the use of SQL as a first class language. It has also grown the amount of collaboration involved in writing and maintaining SQL queries. With collaboration comes the inevitable variation in how queries are written, both structurally and stylistically which can lead to a significant amount of wasted time and energy during code review and employee onboarding. Alan Cruickshank was feeling the pain of this wasted effort first-hand which led him down the path of creating SQLFluff as a linter and formatter to enforce consistency and find bugs in the SQL code that he and his team were working with. In this episode he shares the story of how SQLFluff evolved from a simple hackathon project to an open source linter that is used across a range of companies and fosters a growing community of users and contributors. He explains how it has grown to support multiple dialects of SQL, as well as integrating with projects like DBT to handle templated queries. This is a great conversation about the long detours that are sometimes necessary to reach your original destination and the powerful impact that good tooling can have on team productivity.

Exploring The Patterns And Practices For Deep Learning With Andrew Ferlitsch

June 01, 2021 00:44:19 33.72 MB Downloads: 0

Deep learning is gaining an immense amount of popularity due to the incredible results that it is able to offer with comparatively little effort. Because of this there are a number of engineers who are trying their hand at building machine learning models with the wealth of frameworks that are available. Andrew Ferlitsch wrote a book to capture the useful patterns and best practices for building models with deep learning to make it more approachable for newcomers ot the field. In this episode he shares his deep expertise and extensive experience in building and teaching machine learning across many companies and industries. This is an entertaining and educational conversation about how to build maintainable models across a variety of applications.

Automatically Generate Your Unit Tests From Scratch With Pynguin

May 24, 2021 00:57:40 43.38 MB Downloads: 0

Unit tests are an important tool to ensure the proper functioning of your application, but writing them can be a chore. Stephan Lukasczyk wants to reduce the monotony of the process for Python developers. As part of his PhD research he created the Pynguin project to automate the creation of unit tests. In this episode he explains the complexity involved in generating useful tests for a dynamic language, how he has designed Pynguin to address the challenges, and how you can start using it today for your own work.

Leveling Up Natural Language Processing with Transfer Learning

May 17, 2021 00:46:34 35.16 MB Downloads: 0

Natural language processing is a powerful tool for extracting insights from large volumes of text. With the growth of the internet and social platforms, and the increasing number of people and communities conducting their professional and personal activities online, the opportunities for NLP to create amazing insights and experiences are endless. In order to work with such a large and growing corpus it has become necessary to move beyond purely statistical methods and embrace the capabilities of deep learning, and transfer learning in particular. In this episode Paul Azunre shares his journey into the application and implementation of transfer learning for natural language processing. This is a fascinating look at the possibilities of emerging machine learning techniques for transforming the ways that we interact with technology.

Federated Learning For All With Flower

May 10, 2021 01:01:28 45.31 MB Downloads: 0

Machine learning is a tool that has typically been performed on large volumes of data in one place. As more computing happens at the edge on mobile and low power devices, the learning is being federated which brings a new set of challenges. Daniel Beutel co-created the Flower framework to make federated learning more manageable. In this episode he shares his motivations for starting the project, how you can use it for your own work, and the unique challenges and benefits that this emerging model offers. This is a great exploration of the federated learning space and a framework that makes it more approachable.