Making artificial intelligence practical, productive, and accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, etc). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!
Similar Podcasts
Ship It! DevOps, Infra, Cloud Native
A show about getting your best ideas into the world and seeing what happens. We talk about code, ops, infrastructure, and the people that make it happen. Gerhard Lazu and friends explore all things DevOps, infra, and running apps in production. Whether you’re cloud native, Kubernetes curious, a pro SRE, or just operating a VPS… you’ll love coming along for the ride. Ship It honors the makers, the shippers, and the visionaries that see it through. Some people search for ShipIt or ShipItFM and can’t find the show, so now the strings ShipIt and ShipItFM are in our description too.
Changelog Master Feed
Your one-stop shop for all Changelog podcasts. Weekly shows about software development, developer culture, open source, building startups, artificial intelligence, shipping code to production, and the people involved. Yes, we focus on the people. Everything else is an implementation detail.
The Changelog: Software Development, Open Source
Conversations with the hackers, leaders, and innovators of the software world. Hosts Adam Stacoviak and Jerod Santo face their imposter syndrome so you don’t have to. Expect in-depth interviews with the best and brightest in software engineering, open source, and leadership. This is a polyglot podcast. All programming languages, platforms, and communities are welcome. Open source moves fast. Keep up.
Speech tech and Common Voice at Mozilla
Many people are excited about creating usable speech technology. However, most of the audio data used by large companies isn’t available to the majority of people, and that data is often biased in terms of language, accent, and gender. Jenny, Josh, and Remy from Mozilla join us to discuss how Mozilla is building an open-source voice database that anyone can use to make innovative apps for devices and the web (Common Voice). They also discuss efforts through Mozilla fellowship program to develop speech tech for African languages and understand bias in data sets.
Getting Waymo into autonomous driving
Waymo’s mission is to make it safe and easy for people and things to get where they’re going. After describing the state of the industry, Drago Anguelov - Principal Scientist and Head of Research at Waymo - takes us on a deep dive into the world of AI-powered autonomous driving. Starting with Waymo’s approach to autonomous driving, Drago then delights Daniel and Chris with a tour of the algorithmic tools in the autonomy toolbox.
Hidden Door and so much more
Hilary Mason is building a new way for kids and families to create stories with AI. It’s called Hidden Door, and in her first interview since founding it, Hilary reveals to Chris and Daniel what the experience will be like for kids. It’s the first Practical AI episode in which some of the questions came from Chris’s 8yo daughter Athena. Hilary also shares her insights into various topics, like how to build data science communities during the COVID-19 Pandemic, reasons why data science goes wrong, and how to build great data-based products. Don’t miss this episode packed with hard-won wisdom!
Building the world's most popular data science platform
Everyone working in data science and AI knows about Anaconda and has probably “conda” installed something. But how did Anaconda get started and what are they working on now? Peter Wang, CEO of Anaconda and creator of PyData and popular packages like Bokeh and DataShader, joins us to discuss that and much more. Peter gives some great insights on the Python AI ecosystem and very practical advice for scaling up your data science operation.
Practical AI turns 100!!! 🎉
We made it to 100 episodes of Practical AI! It has been a privilege to have had so many great guests and discussions about everything from AGI to GPUs to AI for good. In this episode, we circle back to the beginning when Jerod and Adam from The Changelog helped us kick off the podcast. We discuss how our perspectives have changed over time, what it has been like to host an AI podcast, and what the future of AI might look like. (GIVEAWAY!)
Attack of the C̶l̶o̶n̶e̶s̶ Text!
Come hang with the bad boys of natural language processing (NLP)! Jack Morris joins Daniel and Chris to talk about TextAttack, a Python framework for adversarial attacks, data augmentation, and model training in NLP. TextAttack will improve your understanding of your NLP models, so come prepared to rumble with your own adversarial attacks!
🤗 All things transformers with Hugging Face
Sash Rush, of Cornell Tech and Hugging Face, catches us up on all the things happening with Hugging Face and transformers. Last time we had Clem from Hugging Face on the show (episode 35), their transformers library wasn’t even a thing yet. Oh how things have changed! This time Sasha tells us all about Hugging Face’s open source NLP work, gives us an intro to the key components of transformers, and shares his perspective on the future of AI research conferences.
MLOps and tracking experiments with Allegro AI
DevOps for deep learning is well… different. You need to track both data and code, and you need to run multiple different versions of your code for long periods of time on accelerated hardware. Allegro AI is helping data scientists manage these workflows with their open source MLOps solution called Trains. Nir Bar-Lev, Allegro’s CEO, joins us to discuss their approach to MLOps and how to make deep learning development more robust.
Practical AI Ethics
The multidisciplinary field of AI Ethics is brand new, and is currently being pioneered by a relatively small number of leading AI organizations and academic institutions around the world. AI Ethics focuses on ensuring that unexpected outcomes from AI technology implementations occur as rarely as possible. Daniel and Chris discuss strategies for how to arrive at AI ethical principles suitable for your own organization, and what is involved in implementing those strategies in the real world. Tune in for a practical AI primer on AI Ethics!
The ins and outs of open source for AI
Daniel and Chris get you Fully-Connected with open source software for artificial intelligence. In addition to defining what open source is, they discuss where to find open source tools and data, and how you can contribute back to the open source AI community.
Operationalizing ML/AI with MemSQL
A lot of effort is put into the training of AI models, but, for those of us that actually want to run AI models in production, performance and scaling quickly become blockers. Nikita from MemSQL joins us to talk about how people are integrating ML/AI inference at scale into existing SQL-based workflows. He also touches on how model features and raw files can be managed and integrated with distributed databases.
Roles to play in the AI dev workflow
This full connected has it all: news, updates on AI/ML tooling, discussions about AI workflow, and learning resources. Chris and Daniel breakdown the various roles to be played in AI development including scoping out a solution, finding AI value, experimentation, and more technical engineering tasks. They also point out some good resources for exploring bias in your data/model and monitoring for fairness.
The long road to AGI
Daniel and Chris go beyond the current state of the art in deep learning to explore the next evolutions in artificial intelligence. From Yoshua Bengio’s NeurIPS keynote, which urges us forward towards System 2 deep learning, to DARPA’s vision of a 3rd Wave of AI, Chris and Daniel investigate the incremental steps between today’s AI and possible future manifestations of artificial general intelligence (AGI).
Explaining AI explainability
The CEO of Darwin AI, Sheldon Fernandez, joins Daniel to discuss generative synthesis and its connection to explainability. You might have heard of AutoML and meta-learning. Well, generative synthesis tackles similar problems from a different angle and results in compact, explainable networks. This episode is fascinating and very timely.
Exploring NVIDIA's Ampere & the A100 GPU
On the heels of NVIDIA’s latest announcements, Daniel and Chris explore how the new NVIDIA Ampere architecture evolves the high-performance computing (HPC) landscape for artificial intelligence. After investigating the new specifications of the NVIDIA A100 Tensor Core GPU, Chris and Daniel turn their attention to the data center with the NVIDIA DGX A100, and then finish their journey at “the edge” with the NVIDIA EGX A100 and the NVIDIA Jetson Xavier NX.