Making artificial intelligence practical, productive, and accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, etc). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!
Similar Podcasts
Ship It! DevOps, Infra, Cloud Native
A show about getting your best ideas into the world and seeing what happens. We talk about code, ops, infrastructure, and the people that make it happen. Gerhard Lazu and friends explore all things DevOps, infra, and running apps in production. Whether you’re cloud native, Kubernetes curious, a pro SRE, or just operating a VPS… you’ll love coming along for the ride. Ship It honors the makers, the shippers, and the visionaries that see it through. Some people search for ShipIt or ShipItFM and can’t find the show, so now the strings ShipIt and ShipItFM are in our description too.
Changelog Master Feed
Your one-stop shop for all Changelog podcasts. Weekly shows about software development, developer culture, open source, building startups, artificial intelligence, shipping code to production, and the people involved. Yes, we focus on the people. Everything else is an implementation detail.
The Changelog: Software Development, Open Source
Conversations with the hackers, leaders, and innovators of the software world. Hosts Adam Stacoviak and Jerod Santo face their imposter syndrome so you don’t have to. Expect in-depth interviews with the best and brightest in software engineering, open source, and leadership. This is a polyglot podcast. All programming languages, platforms, and communities are welcome. Open source moves fast. Keep up.
AI in the browser
We’ve mentioned ML/AI in the browser and in JS a bunch on this show, but we haven’t done a deep dive on the subject… until now! Victor Dibia helps us understand why people are interested in porting models to the browser and how people are using the functionality. We discuss TensorFlow.js and some applications built using TensorFlow.js
Blacklisted facial recognition and surveillance companies
The United States has blacklisted several Chinese AI companies working in facial recognition and surveillance. Why? What are these companies doing exactly, and how does this fit into the international politics of AI? We dig into these questions and attempt to do some live fact finding in this episode.
Flying high with AI drone racing at AlphaPilot
Chris and Daniel talk with Keith Lynn, AlphaPilot Program Manager at Lockheed Martin. AlphaPilot is an open innovation challenge, developing artificial intelligence for high-speed racing drones, created through a partnership between Lockheed Martin and The Drone Racing League (DRL). AlphaPilot challenged university teams from around the world to design AI capable of flying a drone without any human intervention or navigational pre-programming. Autonomous drones will race head-to-head through complex, three-dimensional tracks in DRL’s new Artificial Intelligence Robotic Racing (AIRR) Circuit. The winning team could win up to $2 million in prizes. Keith shares the incredible story of how AlphaPilot got started, just prior to its debut race in Orlando, which will be broadcast on NBC Sports.
AI in the majority world and model distillation
Chris and Daniel take some time to cover recent trends in AI and some noteworthy publications. In particular, they discuss the increasing AI momentum in the majority world (Africa, Asia, South and Central America and the Caribbean), and they dig into Hugging Face’s recent model distillation results.
AI in the majority world and model distillation
Chris and Daniel take some time to cover recent trends in AI and some noteworthy publications. In particular, they discuss the increasing AI momentum in the majority world (Africa, Asia, South and Central America and the Caribbean), and they dig into Hugging Face’s recent model distillation results.
The influence of open source on AI development
The All Things Open conference is happening soon, and we snagged one of their speakers to discuss open source and AI. Samuel Taylor talks about the essential role that open source is playing in AI development and research, and he gives us some tips on choosing AI-related side projects.
Worlds are colliding - AI and HPC
In this very special fully-connected episode of Practical AI, Daniel interviews Chris. They discuss High Performance Computing (HPC) and how it is colliding with the world of AI. Chris explains how HPC differs from cloud/on-prem infrastructure, and he highlights some of the challenges of an HPC-based AI strategy.
AutoML and AI at Google
We’re talking with Sherol Chen, a machine learning developer, about AI at Google and AutoML methods. Sherol explains how the various AI groups within Google work together and how AutoML fits into that puzzle. She also explains how to get started with AutoML step-by-step (this is “practical” AI after all).
On being humAIn
David Yakobovitch joins the show to talk about the evolution of data science tools and techniques, the work he’s doing to teach these things at Galvanize, what his HumAIn Podcast is all about, and more.
Serving deep learning models with RedisAI
Redis is a an open source, in-memory data structure store, widely used as a database, cache and message broker. It now also support tensor data types and deep learning models via the RedisAI module. Why did they build this module? Who is or should be using it? We discuss this and much more with Pieter Cailliau.
AI-driven studies of the ancient world and good GANs
Chris and Daniel take the opportunity to catch up on some recent AI news. Among other things, they discuss the increasing impact of AI on studies of the ancient world and “good” uses of GANs. They also provide some more learning resources to help you level up your AI and machine learning game.
AI code that facilitates good science
We’re talking with Joel Grus, author of Data Science from Scratch, 2nd Edition, senior research engineer at the Allen Institute for AI (AI2), and maintainer of AllenNLP. We discussed Joel’s book, which has become a personal favorite of the hosts, and why he decided to approach data science and AI “from scratch.” Joel also gives us a glimpse into AI2, an introduction to AllenNLP, and some tips for writing good research code. This episode is packed full of reproducible AI goodness!
Celebrating episode 50 and the neural net!
Woo hoo! As we celebrate reaching episode 50, we come full circle to discuss the basics of neural networks. If you are just jumping into AI, then this is a great primer discussion with which to take that leap. Our commitment to making artificial intelligence practical, productive, and accessible to everyone has never been stronger, so we invite you to join us for the next 50 episodes!
Exposing the deception of DeepFakes
This week we bend reality to expose the deceptions of deepfake videos. We talk about what they are, why they are so dangerous, and what you can do to detect and resist their insidious influence. In a political environment rife with distrust, disinformation, and conspiracy theories, deepfakes are being weaponized and proliferated as the latest form of state-sponsored information warfare. Join us for an episode scarier than your favorite horror movie, because this AI bogeyman is real!
Model inspection and interpretation at Seldon
Interpreting complicated models is a hot topic. How can we trust and manage AI models that we can’t explain? In this episode, Janis Klaise, a data scientist with Seldon, joins us to talk about model interpretation and Seldon’s new open source project called Alibi. Janis also gives some of his thoughts on production ML/AI and how Seldon addresses related problems.