Making artificial intelligence practical, productive, and accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, etc). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!

Similar Podcasts

Changelog Master Feed

Changelog Master Feed
Your one-stop shop for all Changelog podcasts. Weekly shows about software development, developer culture, open source, building startups, artificial intelligence, shipping code to production, and the people involved. Yes, we focus on the people. Everything else is an implementation detail.

Ship It! DevOps, Infra, Cloud Native

Ship It! DevOps, Infra, Cloud Native
A show about getting your best ideas into the world and seeing what happens. We talk about code, ops, infrastructure, and the people that make it happen. Gerhard Lazu and friends explore all things DevOps, infra, and running apps in production. Whether you’re cloud native, Kubernetes curious, a pro SRE, or just operating a VPS… you’ll love coming along for the ride. Ship It honors the makers, the shippers, and the visionaries that see it through. Some people search for ShipIt or ShipItFM and can’t find the show, so now the strings ShipIt and ShipItFM are in our description too.

Founders Talk: Startups, CEOs, Leadership

Founders Talk: Startups, CEOs, Leadership
In-depth, one-on-one conversations with founders, CEOs, and makers. The journey, lessons learned, and the struggles. Let’s do this! Host Adam Stacoviak dives deep into the trials, tribulations, successes, and failures of industry leading entrepreneurs, leaders, innovators, and visionaries.

From ML to AI to Generative AI

June 21, 2023 46:41 45.02 MB Downloads: 0

Chris and Daniel take a step back to look at how generative AI fits into the wider landscape of ML/AI and data science. They talk through the differences in how one approaches “traditional” supervised learning and how practitioners are approaching generative AI based solutions (such as those using Midjourney or GPT family models). Finally, they talk through the risk and compliance implications of generative AI, which was in the news this week in the EU.

AI trends: a Latent Space crossover

June 14, 2023 59:40 57.49 MB Downloads: 0

Daniel had the chance to sit down with @swyx and Alessio from the Latent Space pod in SF to talk about current AI trends and to highlight some key learnings from past episodes. The discussion covers open access LLMs, smol models, model controls, prompt engineering, and LLMOps. This mashup is magical. Don’t miss it!

Accidentally building SOTA AI

June 06, 2023 42:04 40.58 MB Downloads: 0

Lately.AI has been working for years on content generation systems that capture your unique “voice” and are tailored to your unique audience. At first, they didn’t know that they were going to build an AI system, but now they have a state-of-the-art generative platform that provides much more than “prompting” out of thin air. Lately.AI’s CEO Kate explain their journey, her perspective on generative AI in marketing, and much more in this episode!

Controlled and compliant AI applications

May 31, 2023 49:43 47.92 MB Downloads: 0

You can’t build robust systems with inconsistent, unstructured text output from LLMs. Moreover, LLM integrations scare corporate lawyers, finance departments, and security professionals due to hallucinations, cost, lack of compliance (e.g., HIPAA), leaked IP/PII, and “injection” vulnerabilities. In this episode, Chris interviews Daniel about his new company called Prediction Guard, which addresses these issues. They discuss some practical methodologies for getting consistent, structured output from compliant AI systems. These systems, driven by open access models and various kinds of LLM wrappers, can help you delight customers AND navigate the increasing restrictions on “GPT” models.

Data augmentation with LlamaIndex

May 23, 2023 44:52 43.28 MB Downloads: 0

Large Language Models (LLMs) continue to amaze us with their capabilities. However, the utilization of LLMs in production AI applications requires the integration of private data. Join us as we have a captivating conversation with Jerry Liu from LlamaIndex, where he provides valuable insights into the process of data ingestion, indexing, and query specifically tailored for LLM applications. Delving into the topic, we uncover different query patterns and venture beyond the realm of vector databases.

Creating instruction tuned models

May 16, 2023 26:33 25.68 MB Downloads: 0

At the recent ODSC East conference, Daniel got a chance to sit down with Erin Mikail Staples to discuss the process of gathering human feedback and creating an instruction tuned Large Language Models (LLM). They also chatted about the importance of open data and practical tooling for data annotation and fine-tuning. Do you want to create your own custom generative AI models? This is the episode for you!

The last mile of AI app development

May 11, 2023 38:59 37.62 MB Downloads: 0

There are a ton of problems around building LLM apps in production and the last mile of that problem. Travis Fischer, builder of open AI projects like @ChatGPTBot, joins us to talk through these problems (and how to overcome them). He helps us understand the hierarchy of complexity from simple prompting to augmentation, agents, and fine-tuning. Along the way we discuss the frontend developer community that is rapidly adopting AI technology via Typescript (not Python).

Large models on CPUs

May 02, 2023 38:30 37.16 MB Downloads: 0

Model sizes are crazy these days with billions and billions of parameters. As Mark Kurtz explains in this episode, this makes inference slow and expensive despite the fact that up to 90%+ of the parameters don’t influence the outputs at all. Mark helps us understand all of the practicalities and progress that is being made in model optimization and CPU inference, including the increasing opportunities to run LLMs and other Generative AI models on commodity hardware.

Causal inference

April 25, 2023 42:21 40.85 MB Downloads: 0

With all the LLM hype, it’s worth remembering that enterprise stakeholders want answers to “why” questions. Enter causal inference. Paul Hünermund has been doing research and writing on this topic for some time and joins us to introduce the topic. He also shares some relevant trends and some tips for getting started with methods including double machine learning, experimentation, difference-in-difference, and more.

Capabilities of LLMs 🤯

April 19, 2023 38:05 36.75 MB Downloads: 0

Large Language Model (LLM) capabilities have reached new heights and are nothing short of mind-blowing! However, with so many advancements happening at once, it can be overwhelming to keep up with all the latest developments. To help us navigate through this complex terrain, we’ve invited Raj - one of the most adept at explaining State-of-the-Art (SOTA) AI in practical terms - to join us on the podcast. Raj discusses several intriguing topics such as in-context learning, reasoning, LLM options, and related tooling. But that’s not all! We also hear from Raj about the rapidly growing data science and AI community on TikTok.

Computer scientists as rogue art historians

April 12, 2023 43:17 41.75 MB Downloads: 0

What can art historians and computer scientists learn from one another? Actually, a lot! Amanda Wasielewski joins us to talk about how she discovered that computer scientists working on computer vision were actually acting like rogue art historians and how art historians have found machine learning to be a valuable tool for research, fraud detection, and cataloguing. We also discuss the rise of generative AI and how we this technology might cause us to ask new questions like: “What makes a photograph a photograph?”

Accelerated data science with a Kaggle grandmaster

April 04, 2023 43:54 42.34 MB Downloads: 0

Daniel and Chris explore the intersection of Kaggle and real-world data science in this illuminating conversation with Christof Henkel, Senior Deep Learning Data Scientist at NVIDIA and Kaggle Grandmaster. Christof offers a very lucid explanation into how participation in Kaggle can positively impact a data scientist’s skill and career aspirations. He also shared some of his insights and approach to maximizing AI productivity uses GPU-accelerated tools like RAPIDS and DALI.

Explainable AI that is accessible for all humans

March 28, 2023 45:37 43.99 MB Downloads: 0

We are seeing an explosion of AI apps that are (at their core) a thin UI on top of calls to OpenAI generative models. What risks are associated with this sort of approach to AI integration, and is explainability and accountability something that can be achieved in chat-based assistants? Beth Rudden of Bast.ai has been thinking about this topic for some time and has developed an ontological approach to creating conversational AI. We hear more about that approach and related work in this episode.

AI search at You.com

March 15, 2023 42:02 40.55 MB Downloads: 0

Neural search and chat-based search are all the rage right now. However, You.com has been innovating in these topics long before ChatGPT. In this episode, Bryan McCann from You.com shares insights related to our mental model of Large Language Model (LLM) interactions and practical tips related to integrating LLMs into production systems.

End-to-end cloud compute for AI/ML

March 07, 2023 44:21 42.77 MB Downloads: 0

We’ve all experienced pain moving from local development, to testing, and then on to production. This cycle can be long and tedious, especially as AI models and datasets are integrated. Modal is trying to make this loop of development as seamless as possible for AI practitioners, and their platform is pretty incredible! Erik from Modal joins us in this episode to help us understand how we can run or deploy machine learning models, massively parallel compute jobs, task queues, web apps, and much more, without our own infrastructure.