Making artificial intelligence practical, productive, and accessible to everyone. Practical AI is a show in which technology professionals, business people, students, enthusiasts, and expert guests engage in lively discussions about Artificial Intelligence and related topics (Machine Learning, Deep Learning, Neural Networks, etc). The focus is on productive implementations and real-world scenarios that are accessible to everyone. If you want to keep up with the latest advances in AI, while keeping one foot in the real world, then this is the show for you!
Similar Podcasts
Ship It! DevOps, Infra, Cloud Native
A show about getting your best ideas into the world and seeing what happens. We talk about code, ops, infrastructure, and the people that make it happen. Gerhard Lazu and friends explore all things DevOps, infra, and running apps in production. Whether you’re cloud native, Kubernetes curious, a pro SRE, or just operating a VPS… you’ll love coming along for the ride. Ship It honors the makers, the shippers, and the visionaries that see it through. Some people search for ShipIt or ShipItFM and can’t find the show, so now the strings ShipIt and ShipItFM are in our description too.
Changelog Master Feed
Your one-stop shop for all Changelog podcasts. Weekly shows about software development, developer culture, open source, building startups, artificial intelligence, shipping code to production, and the people involved. Yes, we focus on the people. Everything else is an implementation detail.
The Changelog: Software Development, Open Source
Conversations with the hackers, leaders, and innovators of the software world. Hosts Adam Stacoviak and Jerod Santo face their imposter syndrome so you don’t have to. Expect in-depth interviews with the best and brightest in software engineering, open source, and leadership. This is a polyglot podcast. All programming languages, platforms, and communities are welcome. Open source moves fast. Keep up.
MLOps is NOT Real
We all hear a lot about MLOps these days, but where does MLOps end and DevOps begin? Our friend Luis from OctoML joins us in this episode to discuss treating AI/ML models as regular software components (once they are trained and ready for deployment). We get into topics including optimization on various kinds of hardware and deployment of models at the edge.
🌍 AI in Africa - Agriculture
In the fourth “AI in Africa” spotlight episode, we welcome Leonida Mutuku and Godliver Owomugisha, two experts in applying advanced technology in agriculture. We had a great discussion about ending poverty, hunger, and inequality in Africa via AI innovation. The discussion touches on open data, relevant models, ethics, and more.
Quick, beautiful web UIs for ML apps
Abubakar Abid joins Daniel and Chris for a tour of Gradio and tells them about the project joining Hugging Face. What’s Gradio? The fastest way to demo your machine learning model with a friendly web interface, allowing non-technical users to access, use, and give feedback on models.
It's been a BIG week in AI news 🗞
This last week has been a big week for AI news. BigScience is training a huge language model (while the world watches), and NVIDIA announced their latest “Hopper” GPUs. Chris and Daniel discuss these and other topics on this fully connected episode!
"Foundation" models
The term “foundation” model has been around since about the middle of last year when a research group at Stanford published the comprehensive report On the Opportunities and Risks of Foundation Models. The naming of these models created some strong reactions, both good and bad. In this episode, Chris and Daniel dive into the ideas behind the report.
Clothing AI in a data fabric
What happens when your data operations grow to Internet-scale? How do thousands or millions of data producers and consumers efficiently, effectively, and productively interact with each other? How are varying formats, protocols, security levels, performance criteria, and use-case specific characteristics meshed into one unified data fabric? Chris and Daniel explore these questions in this illuminating and Fully-Connected discussion that brings this new data technology into the light.
Creating a culture of innovation
Daniel and Chris talk with Lukas Egger, Head of Innovation Office and Strategic Projects at SAP Business Process Intelligence. Lukas describes what it takes to bring a culture of innovation into an organization, and how to infuse product development with that innovation culture. He also offers suggestions for how to mitigate challenges and blockers.
Deploying models (to tractors 🚜)
Alon from Greeneye and Moses from ClearML blew us away when they said that they are training 1000’s of models a year that get deployed to Kubernetes clusters on tractors. Yes… we said tractors, as in farming! This is a super cool discussion about MLOps solutions at scale for interesting use cases in agriculture.
One algorithm to rule them all?
From MIT researchers who have an AI system that rapidly predicts how two proteins will attach, to Facebook’s first high-performance self-supervised algorithm that works for speech, vision, and text, Daniel and Chris survey the AI landscape for notable milestones in the application of AI in industry and research.
🌍 AI in Africa - Voice & language tools
In the third of the “AI in Africa” spotlight episodes, we welcome Kathleen Siminyu, who is building Kiswahili voice tools at Mozilla. We had a great discussion with Kathleen about creating more diverse voice and language datasets, involving local language communities in NLP work, and expanding grassroots ML/AI efforts across Africa.
Exploring deep reinforcement learning
In addition to being a Developer Advocate at Hugging Face, Thomas Simonini is building next-gen AI in games that can talk and have smart interactions with the player using Deep Reinforcement Learning (DRL) and Natural Language Processing (NLP). He also created a Deep Reinforcement Learning course that takes a DRL beginner to from zero to hero. Natalie and Chris explore what’s involved, and what the implications are, with a focus on the development path of the new AI data scientist.
The world needs an AI superhero
From drug discovery at the Quebec AI Institute to improving capabilities with low-resourced languages at the Masakhane Research Foundation and Google AI, Bonaventure Dossou looks for opportunities to use his expertise in natural language processing to improve the world - and especially to help his homeland in the Benin Republic in Africa.
Democratizing ML for speech
You might know about MLPerf, a benchmark from MLCommons that measures how fast systems can train models to a target quality metric. However, MLCommons is working on so much more! David Kanter joins us in this episode to discuss two new speech datasets that are democratizing machine learning for speech via data scale and language/speaker diversity.
Eliminate AI failures
We have all seen how AI models fail, sometimes in spectacular ways. Yaron Singer joins us in this episode to discuss model vulnerabilities and automatic prevention of bad outcomes. By separating concerns and creating a “firewall” around your AI models, it’s possible to secure your AI workflows and prevent model failure.
🌍 AI in Africa - Radiant Earth
In the second of the “AI in Africa” spotlight episodes, we welcome guests from Radiant Earth to talk about machine learning for earth observation. They give us a glimpse into their amazing data and tooling for working with satellite imagery, and they talk about use cases including crop identification and tropical storm wind speed estimation.